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Background and questions

Stochastic nonlinear system:

Consider the following stochastic differential equation:
dx(t) = f(x(1))dt + g(x(t))aw(t), t > o > 0, (1)

with the initial value x(t)) = xo € RY, where f and g are two
measurable functions, and w(t) is a Brownian motion.
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Background and questions

Important applications:

The 1997 Nobel Prize in economics, Black-Scholes formula:
dx(t) = px(t)dt + ox(t)dw(t), t > ty > 0.

Myron Scholes (1941-) Robert C. Merton(1944-)



Background and questions

Common questions:

o If the solution x(t) of (1) exists, then it is a Markov process.

e We are concerned with the existence and uniqueness of
solution to system (1).

e We are concerned with the long time behavior of the solution
x(t):
(i) lim x(t)=? a.s.
l—o0

(i) lim Ejx(t)]P =?

—o0



Background and questions

Various complex phenomena lead to system instability

@ In practical systems, it often happens that some stochastic
differential equations (SDEs) are unstable.

War Financial Crisis



Background and questions

Our concerning question

dx(f) = f(x(1), Hdt + g(x(t), )dB(t), > . )

Question 1: Under what condition the SDE (2) is stable?

dx(t) = [F(x(8), £) + u(x(D)]dt + g(x(1), )dB(t), t>to. (3)

Question 2: If the SDE (2) is unstable, then whether there
exists a control u(x(t)) such that the SDE (3) is stable ?

@ Naturally, an interesting and challenging problem is how to
design a control function to guarantee the stability of
controlled SDEs when the original system is unstable?



Existing works

Existing methods

e Continuous-time feedback control

For stabilization of SDEs, many results have been presented
via continuous-time feedback control, we can refer to the
following papers.

@ X. Mao, Y. G. George, C. Yuan, Stabilization and destabilization
of hybrid systems of stochastic differential equations,
Automatica, 43(2007) 264-273.

@ F. Deng, Q. Luo, X. Mao, Stochastic stabilization of hybrid
differential equations, Automatica, 48(2012)2321-2328.

@ Q. Zhu, H. Wang, Output feedback stabilization of stochastic
feedforward systems with unknown control coefficients and
unknown output function, Automatica, 87(2018)166-175.

@ H. Wang, Q. Zhu, Global stabilization of a class of stochastic
nonlinear time-delay systems with SISS inverse dynamics, IEEE
Tran. Automa. Control 65(10)(2020)4448-4455.



Existing works

Existing methods

e Sampled-data control

For stabilization of SDEs, many results have been presented
via sampled-data control, we can refer to the following papers.

@ X. Mao, Stabilization of continuous-time hybrid stochastic
differential equations by discrete-time feedback control,
Automatica, 49(12)(2013)3677-3681.

@ X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid
stochastic differential equations by feedback control based on
discrete-time state observations, Syst. Control Lett.,
73(2014)88-95.

@ Q. Zhu, Q. Zhang, pth moment exponential stabilisation of hybrid
stochastic differential equations by feedback controls based on
discrete-time state observations with a time delay, IET Control
Theory Appl., 11(2017)1992-2003.

(* Jch Song, B. Zeng, Q. Luo, X. Mao, Stabilisation of hybrid stochastic differential equations by feedback
control based on discrete-time observations of state and mode, IET Control Theory Appl., 11(2017)301-
307.



Existing works

Disadvantages of the above methods

@ The continuous-time state feedback control requires that
the controller observes the state of the process and makes
a decision every time.

@ Obviously, this is too expensive and not realistic in real
lives.

@ Sampled-data control requires that the controller observes
the state of the process and makes a decision every time
according to the fix time.

@ Obviously, it does not take into account the system
behavior.



Our method

Our method-the event-triggered control

@ The event-triggered control is a better sampled-data
control.

@ The sampling and the updating of the controller are
triggered by the occurrence of certain events depending on
the system state.

@ The event-triggered control is more effective in the real
control problem.

@ For deterministic systems, there are a large number of
results.

@ For stochastic systems, there are some results but most
results are concentrated on the discrete-time systems.



Our method

The event-triggered control problem for deterministic systems

@ V. Dolk, M. Heemels, Event-triggered control systems
under packet losses, Automatica,80(2017)143-155.

@ A. Selivanov, E. Fridman, Distributed event-triggered
control of diffusion semilinear PDEs, Automatica,
68(2016)344-351.

@ K. Hashimoto, S. Adachi, D. V. Dimarogonas,
Event-triggered intermittent sampling for nonlinear model
predictive control, Automatica, 81(2017)148-155.

@ D.P. Borgers, W. Heemels, Event-separation properties of
event-triggered control systems, IEEE Trans. Autom.
Control, 59(10)(2014)2644-2656.



Our method

The event-triggered control problem for discrete-time stochastic
systems

@ D. Ding, Z. Wang, B. Shen, and G. Wei, Event-triggered
consensus control for discrete-time stochastic multi-agent
systems: the input to state stability in probability,
Automatica, 62(2015)284-291.

@ D. Quevedo, V. Gupta, W. Ma, S. Yuksel, Stochastic
stability of event-triggered anytime control, IEEE Trans.
Autom. Control, 59(12)(2014)3373-3379.

@ T. Zhang, F. Deng, P. Shi, Event-triggered H-infinity filtering
for nonlinear discrete-time stochastic systems with
application to vehicle roll stability control, International
Journal of Roubust Nonlinear Control, 30(2020)8430-8448.

@ W. Xie, Q. Zhu, Stability of discrete-time stochastic
nonlinear systems with event-triggered state-feedback
control, Physics A, 547(2020)123823.



Our method

The event-triggered control problem for continuous-time
stochastic systems

@ L. Wu, Y. Gao, J. Liu, H. Li, Event-triggered sliding mode
control of stochastic systems via output feedback,
Automatica, 82(2017)79-92.

@ R. Anderson, D. Milutinovic, D. Dimarogonas,
Self-triggered sampling for second-moment stability of
state-feedback controlled SDE systems, Automatica,
54(2015)8-15.

However, delays are ignored in the above works even if delays
are a major source for causing instability and poor
performances.

Open problem: How to solve the event-triggered control
problem for continuous-time stochastic delay systems?



Our method

Notations

e 2z, ={0,1,2,3,...} and Ry = [0, +00).

@ £ denotes the class of measurable and essentially
bounded functions v from R to R" with
[[V]]oo = €SsSUPssq | v(1) |< o0

@ C([-7,0];R™) denotes the family of continuous functions ¢
from [—7, 0] to R" with the uniform norm
6]l = sup_,<p<o |&(0)]-

° Lfro([—T, 0]; R™) denotes the family of all 7, measurabile,
C([—,0]; R")-valued stochastic variables
¢ ={¢(0) : —7 < 6 < 0} such that
SUP_,<p<0 E|¢(8)? < oo.



Our method

Our model

We are concerned with the following Ito stochastic nonlinear
delay system with exogenous disturbances:

dx(t) = [Ax(t) + Bx(t — ) + f(t, x(t)) + g(t, x(t — 7))
+Cu(t) +v(t)]dt + o(t, x(t), x(t — 7))dW(t), (4)

where the initial data

X =¢ = {¢(0), -7 < 6 <0} € L% ([-7,0];R"), x(t) € R",
u(t) e R™, and v(t) € L7, are state vector, feedback control
vector, and unknown exogenous disturbance input vector,
respectively. A, B, C are constant matrices with compatible
dimensions.



Our method

Existence-uniqueness condition of solution

@ f,g,o0 are assumed to satisfy the global Lipschitz condition:
there exist four nonnegative constants h, b, ry, r> such that

|f(f,X1) — f(f,X2)|2 < /1‘X1 — Xg‘z,

9(t. x1) — 9(t, x2)[? < kol x1 — x2[?,
o(t, X1, X3) — o(t, X2, Xa) | < ri|x1 — Xo|? + ra|Xs — Xa?

where t € R, X1, Xo, X3, X4 € R".
@ Moreover, f(t,0) =0, g(t,0) =0, o(t,0,0) = 0.



Our method

A new event-triggered scheme

The sampling time sequence {t; : i € Z, } satisfies ty = 0 and
tivy =inf{t: t > &, h(t) > 0},

where h(t) is an event-generator function to be determined
later. The controller is taken as follows:

u(t) = Kx(t), te [t tipr), i€ 2y, (5)

where K € R™*" js the feedback gain to be determined later.
Then, system (4) can be rewritten as

ax(t) = [Ax(t) + Bx(t — ) + f(t,x(t)) + 9(t, x(t — 7))
+CKx(t;) + v(t)]dt + o(t, x(t), x(t — 7))dW(t), (6)

for t S [tj, t/+1), IG Z+.



Our method

A new event-triggered scheme

Let £(t) denote the measurement error between the sampled
state and current state. Then, we have

e(t) = x(t;) — x(1). (7)
By (7), we can rewrite system (6) as follows:

dx(t) = [(A+ CK)x(t) + Bx(t — ) + (t, x(1))
+(t, x(t — 7)) + CKe(t) + v(t)]at

+o(t, x(t), x(t —7))dW(1). (8)
In this paper, we consider an event-generator function h as
follows:
h(t) = [e(t)]? = m[x(t)° = na, t € [ti, 1), i € 24, (9)

where 7y, 72 € R are the weight parameter and threshold
parameter to be designed, and they satisfy 12 + 13 # 0.



Our method

Definition of input-to-state practically exponentially mean-square
stability

@ System (8) is said to be input-to-state practically
exponentially mean-square stable with respective to the
exogenous disturbance input v(t) if there exist three
constants o > 0, 8 > 0, d > 0 and a function v € #H such
that

Elx(t; ¢))2 < e sup E[¢(8)]2 +(|vl) +d
—7<6<0
fort € Ry, ¢ € L% ([-7,0];R") and v € L.
@ Especially, when d = 0, system (4) is said to be
input-to-state exponentially mean-square stable.
@ Furthermore, when d = 0 and v = 0, system (4) is said to
be exponentially mean-square stable.



Our method

Definition of input-to-state practically exponentially mean-square
stabilization

@ System (4) is said to be input-to-state practically
exponentially mean-square stabilizable if there exist a
feedback gain matrix K and triggering parameters 4, 7
such that system (8) is input-to-state practically
exponentially mean-square stable with respective to the
exogenous disturbance input v(t).

@ Especially, when d = 0, system (4) is said to be
input-to-state exponentially mean-square stabilizable.

@ Furthermore, when d = 0 and v = 0, system (4) is said to
be exponentially mean-square stabilizable.



Main results

Theorem 1

Let the matrix K € R™" and two 71,7, € R, satisfy
0<m < %, 1o > 0. If there exist positive definite matrices
P, Q, Gi(i =1,2,3,4) such that the following matrix inequality

holds:
|‘|_<7T11 PB)<O,

* 22
where

m1=PA+PCK+ATP+K'CTP
+PG;'P+ Gy + PG, 'P
+PG;'P+ PCKG,'K'CTP

211

+Amax(P)r1 + Q + )\max(G4)1 “ o,




Main results

T2 = —Q + Amax(P)r2 + b Go.

Then, system (8) is input-to-state practically exponentially
mean-square stable with respect to v ().

@ Zhu Quanxin, Stabilization of stochastic nonlinear delay
systems with exogenous disturbances and the
event-triggered feedback control, IEEE Transactions on
Automatic Control, 64(9)(2019) 3764-3771.



Main results

Corollary 1

Let all the conditions of Theorem 1 hold. When 7, = 0 in h(t),
system (8) is input-to-state exponentially mean-square stable
with respect to v(t). Furthermore, when v(t) = 0in (8) and

n2 = 01in h(t), system (8) is exponentially mean-square stable.



Main results

Theorem 2

Let two 7,72 € R, satisfy 0 < ny < 5,72 > 0. System (4) is
input-to-state practically exponentially mean-square stabilizable
if there exist positive definite matrices P, Q, Gj(i = 1,2, 3,4)
and a constant matrix Y € R™*" such that

_ < Ao X ) <0, (10)
* 22
where
™1 P P P CY
* -Gy 0 0 0
A= * * —GQ 0 0 9
* * * —G3 O
* * * *  —QGy



Main results

X=[PB 0 0 0 0],
m1=PA+CY+ATP+Y'CT +I,G;

2
—|—)\maX(P)I’1 +Q+ )\max(G4) L )
1—2m
oo = —Q + )\maX(P)I’g + bGo.

Furthermore, the gain matrix K of the desired feedback
controller (5) is designed by

K=YP (11)



Main results

Proof of Theorems

| do not present the proof since it is complex and tedious.
Instead, | only mention some techniques as follows:

@ Construct the following Lyapunov-Krasovskii functional:
ot
V(xt)xT(t)Px(t)Jr/ xT(s)Qx(s)ds.

Jt—1
@ By using the event-triggered condition and =(t), how to
deal with x(i) ?

@ Stochastic analysis, the Dynkin formula and some
inequalities techniques, etc.

@ Since {j is a stopping time,

-t -t
E £|5(s)|2ds:/ EC|:(s)]2ds
L L

does not hold.



Main results

@ In the proof of Theorems 1 and 2, we obtain

E[x(t)]? < ae™ SUIO<OE!€(9)\2 +7(lvlee) +d,  (12)

—7<6<

where
1 7_2 Voka
)\mm( )[)\maX( ) + Amax(Q)B7°€77],
_ Amax(Ga)lv(s)[?
v(s) = (P
qd = 772)\max(G4)

(1—2m ))\min(P)ﬁ.



Main results

@ Thus, we provide the ultimately bounded estimation for the
state x(t) and the ultimate bound can be determined by
(12), which depends on the triggered parameter 7, and the
infinite norm |v| .

@ In particular, when 7, = 0 and v = 0, the system state x(t)
converges to zero with the exponential decay rate 3, which
is determined by the equation
,BAmax(P) + )\max(Q)ﬁTeBT =7



Main results

Theorem 3

Let all the conditions in Theorem 1 hold. Then, there is a
positive constant T* such that t;, 1 — t; > T*forall i € Z,..
Remark

@ In Theorem 3, we obtain the lower bounds of
inter-execution times based on the proposed
event-triggered control method: ¢, 1 — #; > T* > 0 for all
ieZ,..

@ This fact implies that the Zeno behavior does not happen
in our proposed event-triggered control scheme but we can
still ensure the input-to-state exponential mean-square
stability of system (8).

@ Thus, our result is quite different from the traditional
event-triggered control results established on the Zeno
behaviors [1] —[4].

@ Moreover, noise disturbance was ignored in [1] —[4].



Main results

References on the traditional event-triggered control

1 W. Zhu, Z. Jiang, Event-based leader-following consensus
of multi- agent systems with input time delay, IEEE Trans.
Autom. Control, 60(5)(2015)1362-1367.

2 C. Persis, R. Sailer, F. Wirth, Parsimonious event-triggered
distributed control: a Zeno free approach, Automatica,
49(7)(2013)2116-2124.

3 J. Lunze, D. Lehmann, A state-feedback approach to
event-based control, Automatica, 46(1)(2010) 211-215.

4 D. Dimarogonas, E. Frazzoli, K. Johansson, Distributed
eventtrig- gered control for multi-agent systems, |IEEE
Trans. Autom. Control, 57(5)(2012) 1291-1297.



Main results

In the proof of Theorem 3, we obtain

1 ai (mE|x(t;)?
tigr — > —In(1+ 1 (m EX(6)[) + ne

= > 0. 13
a agE‘X(T,')|2—|-K (13)

@ (13) gives a rough prediction for the next triggering time
lir1 by the computation method.
@ Moreover, the execution interval will disappear when 74

and 7, go to zero. Thus, we always choose 71 and 7, to
control the event-triggered frequency.



Main results

H,, control of stochastic networked control systems with
time-varying delays

We are concerned with the following Ito stochastic nonlinear
delay system with exogenous disturbances:

dx(t) = [A(t)x(t) + B(t)x(t — (1)) + C(t)u(t) + F,u(t)]dt
+[Gix(t) + Gox(t — 7(1))]dW(1),
y(t) = Dx(t) + Eu(t), (14)

where the initial data

Xo=¢&={£(0),~7 <0 <0} € L5 ([-7,0L;R"), x(t) € R",

u(t) e R™, u(t) € L£2]0,00) and y(t) € RP are state vector,
control input vector, disturbance input vector, and controlled out
vector, respectively. 7(t) is the time-varying delay, which is
differential and satisfies 0 < 7(f) < 7and 7(t) < p < 1.



Main results

H,, control of stochastic networked control systems with
time-varying delays

A(t) = A+ AA(L), B(t) = B+ AB(t), C(t) = C+ AC(1),

A B,C,D, E,F, and G are constant matrices with appropriate
dimensions; AA(t), AB(t) and AC(t) denote the time-varying
parameter uncertainties such that

[AA(L), AB(t), AC(t)] = MF(t)[Ny, N2, N3], where M and

N;(i = 1,2,3) are the known constant matrices and F(t)
satisfies: FT(t)F(t) < I.

We now introduce the following event-triggered scheme. There
is a sampling time sequence {f; : i € Z;} such that ty = 0 and

ipg =inf{t: t > t,J(t) > 0},

where J(t) is defined in (19) below and it is usually called the
event-generator function.



Main results

H,, control of stochastic networked control systems with
time-varying delays

The controller is defined as
U(t) = KXU/)» te [ti> ti+1)7 ie Zg—a (15)

where K € R™*" is the feedback matrix. Usually, such a state
feedback sampled-data control is ZOH.
Obviously, we can rewrite system (14) as

dx(t) = [A(t)x(t) + B(t)x(t — 7(1))
+C(HKx(t) + Fou(t)]dt
+[Gix(t) + Gox(t — 7(1))]dW(1),
y(t) = Dx(t) + EKx(t), (16)

fort € [t tipq), i€ Z5.



Time-varying delays case

H,, control of stochastic networked control systems with
time-varying delays

It is clear that there exists a unique solution for systems (14)
and (16). As a usual, we use x(t; £) to denote the solution of
system (14) and y(t; ¢) to denote the solution of system (16) for
the initial data xo = ¢ € L% ([-7,0]; R"). Next, we define the
following measurement error:

e(t) = x(t;) — x(1). (17)
Then, it follows from (16) and (17) that
dx(t) = [(A(t) + C(t)K)x(t) + B(t)x(t — 7(1))
+C(tH)Ke(t) + F,u(t)]dt

+[Gix(t) + Gox(t — 7(1))]dW(1),
y(t) = (D + EK)x(t) + EKe(t). (18)



Time-varying delays case

H,, control of stochastic networked control systems with
time-varying delays

The event-generator function J under our research is given as
J(t) = Mle(t)]? = Aa|x(t)?, t € [t tipr), i € 24, (19)

where Ay > 0 and A\, > 0 are two parameters.



Time-varying delays case

Two stability definitions

Definition

System (18) is called robustly exponentially stable in mean-square
(REsMS) if system (18) with v(f) = 0 is exponentially stable in
mean-square for all admissible uncertainties AA(t), AB(t), and
AC(t), i.e., there are two constants o > 0 and 3 > 0 satisfying

E|x(t;€)? < ae™®' sup E[£(0)2.
—r<6<0

Definition
System (18) is called REsMS with an H,, disturbance attenuation
level ~ if it is REsMS and under the zero initial condition,

Elly(£:O)llz < ~vllv(D)]]2

for any nonzero v(t) € £5[0, c0).




Time-varying delays case

Theorem 4

Given K € R™"and Ay > 0, Ao > 0 with A\ > 2),, system (18)
is robustly exponentially stable in mean-square with an H,,
disturbance attenuation level v , if there are matrices P > 0,
Q > 0 and R > 0 satisfying the matrix inequality as follows:

A1 PB  PF,
M={ *« A O <0, (20)
|
where
Mi=PA+ATP+ PCK + K'CTP+4PMM'P
+N{ Ny + KTNJ NsK + PCCT P + 2G] PGy
+Q+2(D+ EK)'(D+ EK) + R
+[>\max(KTN3TN3K) + 2)\max(KTETEK)
2)2

+Amax(KTK)]ml,



Time-varying delays case

Ao = —(1 = p)Q+ NI Np +2G] PG,.

@ Zhu Quanxin*, Huang Tingwen, H., control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.



Time-varying delays case

Theorem 5

Given K € R™"and Ay > 0, Ao > 0 with A\ > 25, system (8)
is robustly exponentially mean-square stable with an H,
disturbance attenuation level v , if there are matrices P > 0,
Q > 0 and R > 0 satisfying the LMI as follows:

1 PB PCK PF, PM PC

4
* /\22 0 0 0 0
o * * 7\33 0 0 0
= * % N I 0 <0, (21)
* * * * —£ 0
* * * * * =1
where

Ay =PA+ATP+ PCK + KTCTP + NNy + KTNJ NsK
+2GT PG, + Q+2(D+ EK)T(D + EK) + 7R + 2)z],



Time-varying delays case

Moo = —(1 — p)Q+ NI Nz + 2G, PGy,
Mgz = —(M — 2X2)/ + KTNJ NgK + 2KTETEK.

@ Zhu Quanxin*, Huang Tingwen, H., control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.



Time-varying delays case

Proof of Theorems

| do not present the proof since it is complex and tedious.
Instead, | only mention some techniques as follows:
@ Construct the following Lyapunov-Krasovskii functional:

V(x) = xT () Px(t) + /t t " xT(s)Qx(s)ds

0 t
+ / do [ xT(s)Rx(s)ds.
-7 t+6
@ Step 1: We will prove that system (18) with v(t) =0 is
REsMS for all admissible uncertainties AA(t), AB(t) and
AC(D).
@ Step 2: We will prove the following fact:

Elly(t:&)ll2 < yllv(B)]]2.

@ Stochastic analysis, the Dynkin formula, Fubini’s theorem
and some inequalities techniques, etc.



Time-varying delays case

Theorem 6

For given positive constants Ay > 0, \> > 0 with Ay > 2X, and
positive constants € > 0, p > 0. System (18) is robustly
exponentially mean-square stable with an H,, disturbance
attenuation level ~, if there exist positive definite matrices X, Q,
and matrix K satisfying the LMI as follows:

=11 Z12 =13
== * Zoo oj <0, (22)
* * =33
where

[ Ay BQ CK F, M C
x Ap 0O 0 0 0
- * * 12\33 0 0 0
"= * * x =21 0 0
* * * * _Zl 0
* * * * O




Time-varying delays case

[ XNT KN XTGy X (DX +EK)T ViX ]
* 0 0 0 0 0
- * * 0 0 0 0
—12= * * * 0 0 0
* * * * 0 0
L * * ES * * 0 ]
X _ 0 _0 X 0 0
* C?TNéF QG, 0 0 0
e KTNT KTET
513_ * 0 \/)\172)\2 3 s
* 0 0 0
* * 0 0
| * * * 0 |
X !



Time-varying delays case

E33 :dlag{ _27){27 _/7 _%7 _/7 _/7 _é}a

in which Ay = AX + XAT + CK + KTC, Ay = —(1 - p)Q,
Asz = —2¢X. Further, the control gain matrix K is designed by

K=KX". (23)

@ Zhu Quanxin*, Huang Tingwen, H., control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.



Time-varying delays case

Proof of Theorem 6

@ DefineP=X"1,Q=Q ', and K = KX 1.

@ Apply the Schur complement lemma and the following
lemma:

For any n x n matrices U, X > 0 and positive scalar 6 > 0, the
following matrix inequality holds:

UX—TUT > 9(U + UT) — 62X.




Time-varying delays case

@ In Theorems 4-6, our stability criteria depend on the upper
bound of delay = and the upper bound of derivative of
delay p. Thus, our results are less conservative and more
effective than those delay-independent results.

@ According to the definition of ¢, 1 and (19), one can know
that the interval of arbitrary neighbouring triggered instants
has a positive lower bound, i.e., t,.1 — t; > 0 forall i € Z,
which implies that there is no Zeno behavior.

@ Compared with the results obtained in [1]-[4], our results
are more general. In fact, the authors in [1]-[4] ignored the
effects of delays, noise disturbance and unknown
parameters. Furthermore, our results are more easily
applied in practice than those given in [1]-[4] since they are
given by LMIs (see Theorem 6).



Time-varying delays case

[1] P. Tabuada, Event-triggered real-time scheduling of
stabilizing control tasks, IEEE Trans. Autom. Control,
52(2007)1680-1685.

[2] Y. Xie, Z. Lin, Event-triggered global stabilization of general
linear systems with bounded controls, Automatica,
107(2019)241-254.

[3] P. Tallapragada, N. Chopra, On event triggered tracking for
nonlinear systems, IEEE Trans. Autom. Control,
58(2013)2343-2348.

[4] E. Garcia, P. Antsaklis, Model-based event-triggered control
for systems with quantization and time-varying network delays,
IEEE Trans. Autom. Control, 58(2013)422-434.



Several examples

Example 1

Let us consider the following It0 stochastic nonlinear delay
system with exogenous disturbances:

dx(t) = [Ax(t) + Bx(t — 1) + f(t, x(1))
+9(t, x(t — 1)) + Cu(t) + v(t)]dt
+o(t, x(t), x(t —1))dW(t), (24)

15 —1 13 —1 1.2
A‘[mz 1.2}’3_[0.9 o.s]’c_[o.s]’

f(t, x(t)) = 0.1(1 + sin(t))x(t),
g(t,x(t—1))=0.1(1 +cos(t))x(t—1),

([ 03x(f) 0.3x(t—1)
ot x(1), x(t = 1)) = ( 0255(t) 0.3%(t— 1) )
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The exogenous disturbance input v(t) = (v1(t), va(1))" is
unknown but bounded. From figures (a) and (b), we know that
system (24) with u(t) = 0 is unstable even if the exogenous
disturbance input is missing.

(1) and Xe(1)

Figure: The sample paths of system (24) with u(t) =0and v(t) =0
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E|% ()] and E | X(0f*

Time vs

Figure: 2th moment of the solution to system (24) with u(t) = 0 and
v(t)=0
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To stabilize system (24), we choose n; = 0.1 and . = 0.1 . By
using the Matlab LMI toolbox, we can obtain the following
feasible solution for the LMI (10):

p_ 28.2232 12.7276 Q- 140.9209 74.3561
- | 12.7276  5.7997 |’ | 743561 41.6116 |’

G — 112.3792 65.5420 G, — 114.1626 67.8160
17| 65.5420 41.7449 |’ 27 | 67.8160 44.2443 |’

Gn — 180.2896 23.1727 Gy — 332.8759 216.0742
87| 231727 141.1538 |’ %~ | 216.0742 152.8354

Y= -191.7285 —-127.8857 |.

Thus, from Theorem 2 we can design the feedback gain matrix
K as

K =YP' = 304.4865 —690.2565 |.
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Choose the unknown exogenous disturbance v(t) satisfying
vi(t) = v[0.5 + cos(t)] and vo(t) = vp[—0.5 + sin(t)], where v
is a sequence of random generator numbers obeying
N(—0.4,0.4) and the initial values is a sequence of random
numbers of U(—1,1). Furthermore, figure (c) shows that the
control system is input-to-state practically exponentially
mean-square stable.

EPX(0)7 andEPXf°

Figure: 2th moment of the solution to system (24) with control and
the exogenous disturbance
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Let us consider the following stochastic networked control delay
system:

dx(t) = [A(t)x(t) + B(t)x(t — 7(t)) + C(t)u(t) + F,u(t)]dt
+[Gyx(t) + Gox(t — 7(1))]dW(1),
y(t) = Dx(t) + Eu(t). (25)
The parameters of system (25) are given as follows:

[ 12 0 03 0
A= o —1.3}’5_{ 0 —0.5]’

(02 0 0.2 0.1
C*_ 0 —0.2}’61[ 02 03 ]

[ —01 05 04 -02
Gz__—o.z —0.3]’D_[0.1 0.2 }
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(002 0 | o _[-03 03
0 02" | 01 04/

[AA(D).AB(L), AC(D)] = ME(D[N;, No. N,

[ 0.3 0.1 01 0
M‘_o.1 0.2 ]’M_[ 0 —0.1}’

[ 01 0.3 0.1 04
%__4102y%_{m 01]

F(t) =sin(3~xt), 7(t) =1+ 0.2cos(2rt),

Choose Ay =0.77, Ao = 0.05,v = 0.56. By virtue of MATLAB,
the corresponding solutions for (22) can be obtained as follows
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[ 0.9949 0.1148
| 0.1148 1.5947 |’

[1.3288 0.5341
| 0.5341 1.6456 |’

[ -1.3878 -0.0584
| —0.0584 08411 |

Then, from Theorem 44, we obtain the following control matrix:

[ —1.4023 0.0643
~| —0.1205 05361 |’

Therefore, system (25) is robustly exponentially stablizable in
mean-square with an H, disturbance attenuation level

~ = 0.56 by using the above matrix K, the event-triggered
parameters Ay = 0.77 and \» = 0.05.

K
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The state response of system (25) without/with the control can
be found in Figures 1-3.

25

L5

1,2

0.5

ilt)i

05}/

4
Time Us

Figure: The state response of system (25) without control under 2-D
case.
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\ A \
0 VP N, VY-V

] 1 2 3 4 5 6 7 8
Time s

Figure: The state response of system (25) with control under 2-D
case.
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0 Mottt W M MorAins

0 1 2 3 4 5 6 7 8
Time s

Figure: The time evolution for E|x(t)[2.
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The parameters of system (25) with 3-D case are given as
follows:

[ —14 02 02 ]
A=| 03 -12 -02 |,
01 02 -12

04 -02 03
B=| -03 -02 03 |,
03 02 -06 |

[ 02 01 0.2}

c=| -02 01 02
01 01 -02

[ —02 —01 0.2
G =| 02 02 03 |,
| —02 04 -0.3
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[ —01 —01 05 —0.2
Go=| -02 -03 02 |,D'=| 03 |,

. 0 05 -05 —0.2

[ —0.3 0.3
ET=| 01 |,F=|-03],

02 0.2

(0.2
M=|03|,N; =[03020.1],

0.1

No =[0.10.50.7], N3 = [0.6 0.2 0.1],
F(t) =sin(nt), 7(t) = 0.8 + 0.15cos(rt).

Choose \{ =2.45, X\, = 0.01,y = 2.35.
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By virtue of MATLAB, the corresponding solutions for (22) can
be obtained as follows

X =] —0.4469 15488 0.2809

1.3652 —0.4469 —0.0991
—0.0991 0.2809 0.6286

_ 1.1501 —-0.2983 0.0299

Q=| —0.2983 1.3472 0.2769 |,
| 0.0299 0.2769 0.4277

K=| 01296 —0.6256 —1.3884

0.0754 —-1.3884 0.8779

—-0.2796 0.1296  0.0754 ]
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Then, from Theorem 44, we obtain the following control matrix:

—0.1947 0.0123  0.0838
K= | —0.0734 -0.0244 —-2.2094 | .
—0.2347 —-1.3174 1.9483

Therefore, system (25) is robustly exponentially stablizable in
mean-square with an H, disturbance attenuation level

~ = 2.35 by using the above matrix K, the event-triggered
parameters Ay = 2.45 and \» = 0.01. The state response of
system (25) without/with the control can be found in Figures 4
and 5, respectively.
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Figure: The state response of system (25) with control under 3-D

case.
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:

x(t))*

0 1 2 3 4 5
Time ts

Figure: The state response of system (25) with control under 3-D
case.
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