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Stochastic nonlinear system:

Consider the following stochastic differential equation:

dx(t) = f (x(t))dt + g(x(t))dw(t), t ≥ t0 ≥ 0, (1)

with the initial value x(t0) = x0 ∈ Rd , where f and g are two
measurable functions, and w(t) is a Brownian motion.

Figure: Ito Kiyoshi(1915-2008)
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Important applications:

The 1997 Nobel Prize in economics, Black-Scholes formula:

dx(t) = µx(t)dt + σx(t)dw(t), t ≥ t0 ≥ 0.

Figure: Myron Scholes and Robert C. Merton
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Common questions:

• If the solution x(t) of (1) exists, then it is a Markov process.

•We are concerned with the existence and uniqueness of
solution to system (1).

•We are concerned with the long time behavior of the solution
x(t):

(i) lim
t−→∞

x(t) =? a.s.

(ii) lim
t−→∞

E|x(t)|p =?
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Various complex phenomena lead to system instability

In practical systems, it often happens that some stochastic
differential equations (SDEs) are unstable.

Figure: Various complex phenomena lead to system instability
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Our concerning question

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), t ≥ t0. (2)

Question 1: Under what condition the SDE (2) is stable?

dx(t) = [f (x(t), t) + u(x(t))]dt + g(x(t), t)dB(t), t ≥ t0. (3)

Question 2: If the SDE (2) is unstable, then whether there
exists a control u(x(t)) such that the SDE (3) is stable ?

Naturally, an interesting and challenging problem is how to
design a control function to guarantee the stability of
controlled SDEs when the original system is unstable?
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Existing methods

• Continuous-time feedback control
For stabilization of SDEs, many results have been presented
via continuous-time feedback control, we can refer to the
following papers.

X. Mao, Y. G. George, C. Yuan, Stabilization and destabilization
of hybrid systems of stochastic differential equations,
Automatica, 43(2007) 264-273.
F. Deng, Q. Luo, X. Mao, Stochastic stabilization of hybrid
differential equations, Automatica, 48(2012)2321-2328.
Q. Zhu, H. Wang, Output feedback stabilization of stochastic
feedforward systems with unknown control coefficients and
unknown output function, Automatica, 87(2018)166-175.
H. Wang, Q. Zhu, Global stabilization of a class of stochastic
nonlinear time-delay systems with SISS inverse dynamics, IEEE
Tran. Automa. Control 65(10)(2020)4448-4455.
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Existing methods

• Sampled-data control
For stabilization of SDEs, many results have been presented
via sampled-data control, we can refer to the following papers.

X. Mao, Stabilization of continuous-time hybrid stochastic
differential equations by discrete-time feedback control,
Automatica, 49(12)(2013)3677-3681.
X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid
stochastic differential equations by feedback control based on
discrete-time state observations, Syst. Control Lett.,
73(2014)88-95.
Q. Zhu, Q. Zhang, pth moment exponential stabilisation of hybrid
stochastic differential equations by feedback controls based on
discrete-time state observations with a time delay, IET Control
Theory Appl., 11(2017)1992-2003.
G. Song, B. Zeng, Q. Luo, X. Mao, Stabilisation of hybrid stochastic differential equations by feedback
control based on discrete-time observations of state and mode, IET Control Theory Appl., 11(2017)301-
307.
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Disadvantages of the above methods

The continuous-time state feedback control requires that
the controller observes the state of the process and makes
a decision every time.
Obviously, this is too expensive and not realistic in real
lives.
Sampled-data control requires that the controller observes
the state of the process and makes a decision every time
according to the fix time.
Obviously, it does not take into account the system
behavior.



Background and questions Existing works Our method Main results Time-varying delays case Several examples

Our method–the event-triggered control

The event-triggered control is a better sampled-data
control.
The sampling and the updating of the controller are
triggered by the occurrence of certain events depending on
the system state.
The event-triggered control is more effective in the real
control problem.
For deterministic systems, there are a large number of
results.
For stochastic systems, there are some results but most
results are concentrated on the discrete-time systems.
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The event-triggered control problem for deterministic systems

V. Dolk, M. Heemels, Event-triggered control systems
under packet losses, Automatica,80(2017)143-155.
A. Selivanov, E. Fridman, Distributed event-triggered
control of diffusion semilinear PDEs, Automatica,
68(2016)344-351.
K. Hashimoto, S. Adachi, D. V. Dimarogonas,
Event-triggered intermittent sampling for nonlinear model
predictive control, Automatica, 81(2017)148-155.
D.P. Borgers, W. Heemels, Event-separation properties of
event-triggered control systems, IEEE Trans. Autom.
Control, 59(10)(2014)2644-2656.
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The event-triggered control problem for discrete-time stochastic
systems

D. Ding, Z. Wang, B. Shen, and G. Wei, Event-triggered
consensus control for discrete-time stochastic multi-agent
systems: the input to state stability in probability,
Automatica, 62(2015)284-291.
D. Quevedo, V. Gupta, W. Ma, S. Yuksel, Stochastic
stability of event-triggered anytime control, IEEE Trans.
Autom. Control, 59(12)(2014)3373-3379.
T. Zhang, F. Deng, P. Shi, Event-triggered H-infinity filtering
for nonlinear discrete-time stochastic systems with
application to vehicle roll stability control, International
Journal of Roubust Nonlinear Control, 30(2020)8430-8448.
W. Xie, Q. Zhu, Stability of discrete-time stochastic
nonlinear systems with event-triggered state-feedback
control, Physics A, 547(2020)123823.
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The event-triggered control problem for continuous-time
stochastic systems

L. Wu, Y. Gao, J. Liu, H. Li, Event-triggered sliding mode
control of stochastic systems via output feedback,
Automatica, 82(2017)79-92.
R. Anderson, D. Milutinovic, D. Dimarogonas,
Self-triggered sampling for second-moment stability of
state-feedback controlled SDE systems, Automatica,
54(2015)8-15.

However, delays are ignored in the above works even if delays
are a major source for causing instability and poor
performances.
Open problem: How to solve the event-triggered control
problem for continuous-time stochastic delay systems?
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Notations

Z+ = {0,1,2,3, ...} and R+ = [0,+∞).
Ln
∞ denotes the class of measurable and essentially

bounded functions υ from R+ to Rn with
||υ||∞ = ess supt≥0 | υ(t) |<∞.
C([−τ,0];Rn) denotes the family of continuous functions φ
from [−τ,0] to Rn with the uniform norm
‖φ‖τ = sup−τ≤θ≤0 |φ(θ)|.
L2
F0

([−τ,0];Rn) denotes the family of all F0 measurable,
C([−τ,0];Rn)-valued stochastic variables
φ = {φ(θ) : −τ ≤ θ ≤ 0} such that
sup−τ≤θ≤0 E|φ(θ)|2 <∞.
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Our model

We are concerned with the following Itô stochastic nonlinear
delay system with exogenous disturbances:

dx(t) = [Ax(t) + Bx(t − τ) + f (t , x(t)) + g(t , x(t − τ))

+Cu(t) + υ(t)]dt + σ(t , x(t), x(t − τ))dW (t), (4)

where the initial data
x0 = φ = {φ(θ),−τ ≤ θ ≤ 0} ∈ L2

F0
([−τ,0];Rn), x(t) ∈ Rn,

u(t) ∈ Rm, and υ(t) ∈ Ln
∞ are state vector, feedback control

vector, and unknown exogenous disturbance input vector,
respectively. A,B,C are constant matrices with compatible
dimensions.
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Existence-uniqueness condition of solution

f ,g, σ are assumed to satisfy the global Lipschitz condition:
there exist four nonnegative constants l1, l2, r1, r2 such that

|f (t , x1)− f (t , x2)|2 ≤ l1|x1 − x2|2,
|g(t , x1)− g(t , x2)|2 ≤ l2|x1 − x2|2,
|σ(t , x1, x3)− σ(t , x2, x4)|2 ≤ r1|x1 − x2|2 + r2|x3 − x4|2,

where t ∈ R+, x1, x2, x3, x4 ∈ Rn.
Moreover, f (t ,0) = 0, g(t ,0) = 0, σ(t ,0,0) = 0.
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A new event-triggered scheme

The sampling time sequence {ti : i ∈ Z+} satisfies t0 = 0 and

ti+1 = inf{t : t > ti ,h(t) > 0},

where h(t) is an event-generator function to be determined
later. The controller is taken as follows:

u(t) = Kx(ti), t ∈ [ti , ti+1), i ∈ Z+, (5)

where K ∈ Rm×n is the feedback gain to be determined later.
Then, system (4) can be rewritten as

dx(t) = [Ax(t) + Bx(t − τ) + f (t , x(t)) + g(t , x(t − τ))

+CKx(ti) + υ(t)]dt + σ(t , x(t), x(t − τ))dW (t), (6)

for t ∈ [ti , ti+1), i ∈ Z+.
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A new event-triggered scheme

Let ε(t) denote the measurement error between the sampled
state and current state. Then, we have

ε(t) = x(ti)− x(t). (7)

By (7), we can rewrite system (6) as follows:

dx(t) = [(A + CK )x(t) + Bx(t − τ) + f (t , x(t))

+g(t , x(t − τ)) + CK ε(t) + υ(t)]dt
+σ(t , x(t), x(t − τ))dW (t). (8)

In this paper, we consider an event-generator function h as
follows:

h(t) = |ε(t)|2 − η1|x(ti)|2 − η2, t ∈ [ti , ti+1), i ∈ Z+, (9)

where η1, η2 ∈ R+ are the weight parameter and threshold
parameter to be designed, and they satisfy η2

1 + η2
2 6= 0.
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Definition of input-to-state practically exponentially mean-square
stability

System (8) is said to be input-to-state practically
exponentially mean-square stable with respective to the
exogenous disturbance input υ(t) if there exist three
constants α > 0, β > 0, d ≥ 0 and a function γ ∈ H such
that

E|x(t ;φ)|2 ≤ αe−βt sup
−τ≤θ≤0

E|φ(θ)|2 + γ(|υ|∞) + d

for t ∈ R+, φ ∈ L2
F0

([−τ,0];Rn) and υ ∈ Ln
∞.

Especially, when d = 0, system (4) is said to be
input-to-state exponentially mean-square stable.
Furthermore, when d = 0 and υ = 0, system (4) is said to
be exponentially mean-square stable.
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Definition of input-to-state practically exponentially mean-square
stabilization

System (4) is said to be input-to-state practically
exponentially mean-square stabilizable if there exist a
feedback gain matrix K and triggering parameters η1, η2
such that system (8) is input-to-state practically
exponentially mean-square stable with respective to the
exogenous disturbance input υ(t).
Especially, when d = 0, system (4) is said to be
input-to-state exponentially mean-square stabilizable.
Furthermore, when d = 0 and υ = 0, system (4) is said to
be exponentially mean-square stabilizable.
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Theorem 1

Let the matrix K ∈ Rm×n and two η1, η2 ∈ R+ satisfy
0 ≤ η1 <

1
2 , η2 ≥ 0. If there exist positive definite matrices

P,Q,Gi(i = 1,2,3,4) such that the following matrix inequality
holds:

Π =

(
π11 PB
? π22

)
< 0,

where

π11 = PA + PCK + AT P + K T CT P
+PG−1

1 P + l1G1 + PG−1
2 P

+PG−1
3 P + PCKG−1

4 K T CT P

+λmax(P)r1 + Q + λmax(G4)
2η1

1− 2η1
,
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π22 = −Q + λmax(P)r2 + l2G2.

Then, system (8) is input-to-state practically exponentially
mean-square stable with respect to υ(t).

Zhu Quanxin, Stabilization of stochastic nonlinear delay
systems with exogenous disturbances and the
event-triggered feedback control, IEEE Transactions on
Automatic Control, 64(9)(2019) 3764-3771.
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Corollary 1

Let all the conditions of Theorem 1 hold. When η2 = 0 in h(t),
system (8) is input-to-state exponentially mean-square stable
with respect to υ(t). Furthermore, when υ(t) = 0 in (8) and
η2 = 0 in h(t), system (8) is exponentially mean-square stable.
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Theorem 2

Let two η1, η2 ∈ R+ satisfy 0 ≤ η1 <
1
2 , η2 ≥ 0. System (4) is

input-to-state practically exponentially mean-square stabilizable
if there exist positive definite matrices P,Q,Gi(i = 1,2,3,4)
and a constant matrix Y ∈ Rm×n such that

Π =

(
Λ X
? π22

)
< 0, (10)

where

Λ =


π11 P P P CY
? −G1 0 0 0
? ? −Ĝ2 0 0
? ? ? −G3 0
? ? ? ? −G4

 ,
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X = [PB 0 0 0 0]T ,

π11 = PA + CY + AT P + Y T CT + l1G1

+λmax(P)r1 + Q + λmax(G4)
2η1

1− 2η1
,

π22 = −Q + λmax(P)r2 + l2G2.

Furthermore, the gain matrix K of the desired feedback
controller (5) is designed by

K = YP−1. (11)
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Proof of Theorems

I do not present the proof since it is complex and tedious.
Instead, I only mention some techniques as follows:

Construct the following Lyapunov-Krasovskii functional:

V (xt ) = xT (t)Px(t) +

∫ t

t−τ
xT (s)Qx(s)ds.

By using the event-triggered condition and ε(t), how to
deal with x(tk ) ?
Stochastic analysis, the Dynkin formula and some
inequalities techniques, etc.
Since ti is a stopping time,

E
∫ t

ti
L|ε(s)|2ds =

∫ t

ti
EL|ε(s)|2ds

does not hold.
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Remark

In the proof of Theorems 1 and 2, we obtain

E|x(t)|2 ≤ αe−βt sup
−τ≤θ≤0

E|ξ(θ)|2 + γ(|υ|∞) + d , (12)

where

α :=
1

λmin(P)
[λmax(P) + λmax(Q)βτ2eβτ ],

γ(s) :=
λmax(G3)|υ(s)|2

λmin(P)β
,

d :=
η2λmax(G4)

(1− 2η1)λmin(P)β
.
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Remark

Thus, we provide the ultimately bounded estimation for the
state x(t) and the ultimate bound can be determined by
(12), which depends on the triggered parameter η2 and the
infinite norm |υ|∞.
In particular, when η2 = 0 and υ = 0, the system state x(t)
converges to zero with the exponential decay rate β, which
is determined by the equation
βλmax(P) + λmax(Q)βτeβτ = γ.
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Theorem 3

Let all the conditions in Theorem 1 hold. Then, there is a
positive constant T ∗ such that ti+1 − ti ≥ T ∗ for all i ∈ Z+.
Remark

In Theorem 3, we obtain the lower bounds of
inter-execution times based on the proposed
event-triggered control method: ti+1 − ti ≥ T ∗ > 0 for all
i ∈ Z+.
This fact implies that the Zeno behavior does not happen
in our proposed event-triggered control scheme but we can
still ensure the input-to-state exponential mean-square
stability of system (8).
Thus, our result is quite different from the traditional
event-triggered control results established on the Zeno
behaviors [1] –[4].
Moreover, noise disturbance was ignored in [1] –[4].
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References on the traditional event-triggered control

1 W. Zhu, Z. Jiang, Event-based leader-following consensus
of multi- agent systems with input time delay, IEEE Trans.
Autom. Control, 60(5)(2015)1362-1367.

2 C. Persis, R. Sailer, F. Wirth, Parsimonious event-triggered
distributed control: a Zeno free approach, Automatica,
49(7)(2013)2116-2124.

3 J. Lunze, D. Lehmann, A state-feedback approach to
event-based control, Automatica, 46(1)(2010) 211-215.

4 D. Dimarogonas, E. Frazzoli, K. Johansson, Distributed
eventtrig- gered control for multi-agent systems, IEEE
Trans. Autom. Control, 57(5)(2012) 1291-1297.
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Remark

In the proof of Theorem 3, we obtain

ti+1 − ti ≥
1
a1

ln(1 +
a1(η1E|x(ti)|2) + η2

a2E|x(ti)|2 + K̄
> 0. (13)

(13) gives a rough prediction for the next triggering time
ti+1 by the computation method.
Moreover, the execution interval will disappear when η1
and η2 go to zero. Thus, we always choose η1 and η2 to
control the event-triggered frequency.
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H∞ control of stochastic networked control systems with
time-varying delays

We are concerned with the following Itô stochastic nonlinear
delay system with exogenous disturbances:

dx(t) = [A(t)x(t) + B(t)x(t − τ(t)) + C(t)u(t) + Fυυ(t)]dt
+[G1x(t) + G2x(t − τ(t))]dW (t),

y(t) = Dx(t) + Eu(t), (14)

where the initial data
x0 = ξ = {ξ(θ),−τ ≤ θ ≤ 0} ∈ L2

F0
([−τ,0];Rn), x(t) ∈ Rn,

u(t) ∈ Rm, υ(t) ∈ L2[0,∞) and y(t) ∈ Rp are state vector,
control input vector, disturbance input vector, and controlled out
vector, respectively. τ(t) is the time-varying delay, which is
differential and satisfies 0 ≤ τ(t) ≤ τ and τ̇(t) ≤ ρ < 1.
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H∞ control of stochastic networked control systems with
time-varying delays

A(t) = A +4A(t), B(t) = B +4B(t), C(t) = C +4C(t),
A,B,C,D,E ,Fυ and G are constant matrices with appropriate
dimensions; 4A(t),4B(t) and 4C(t) denote the time-varying
parameter uncertainties such that
[4A(t),4B(t),4C(t)] = MF (t)[N1,N2,N3], where M and
Ni(i = 1,2,3) are the known constant matrices and F (t)
satisfies: F T (t)F (t) ≤ I.
We now introduce the following event-triggered scheme. There
is a sampling time sequence {ti : i ∈ Z+

o } such that t0 = 0 and

ti+1 = inf{t : t > ti , J(t) > 0},

where J(t) is defined in (19) below and it is usually called the
event-generator function.
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H∞ control of stochastic networked control systems with
time-varying delays

The controller is defined as

u(t) = Kx(ti), t ∈ [ti , ti+1), i ∈ Z+
o , (15)

where K ∈ Rm×n is the feedback matrix. Usually, such a state
feedback sampled-data control is ZOH.
Obviously, we can rewrite system (14) as

dx(t) = [A(t)x(t) + B(t)x(t − τ(t))

+C(t)Kx(ti) + Fυυ(t)]dt
+[G1x(t) + G2x(t − τ(t))]dW (t),

y(t) = Dx(t) + EKx(ti), (16)

for t ∈ [ti , ti+1), i ∈ Z+
o .
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H∞ control of stochastic networked control systems with
time-varying delays

It is clear that there exists a unique solution for systems (14)
and (16). As a usual, we use x(t ; ξ) to denote the solution of
system (14) and y(t ; ξ) to denote the solution of system (16) for
the initial data x0 = ξ ∈ L2

F0
([−τ,0];Rn). Next, we define the

following measurement error:

e(t) = x(ti)− x(t). (17)

Then, it follows from (16) and (17) that

dx(t) = [(A(t) + C(t)K )x(t) + B(t)x(t − τ(t))

+C(t)Ke(t) + Fυυ(t)]dt
+[G1x(t) + G2x(t − τ(t))]dW (t),

y(t) = (D + EK )x(t) + EKe(t). (18)
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H∞ control of stochastic networked control systems with
time-varying delays

The event-generator function J under our research is given as

J(t) = λ1|e(t)|2 − λ2|x(ti)|2, t ∈ [ti , ti+1), i ∈ Z+
o , (19)

where λ1 > 0 and λ2 > 0 are two parameters.
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Two stability definitions

Definition
System (18) is called robustly exponentially stable in mean-square
(REsMS) if system (18) with υ(t) = 0 is exponentially stable in
mean-square for all admissible uncertainties 4A(t),4B(t), and
4C(t), i.e., there are two constants α > 0 and β > 0 satisfying

E|x(t ; ξ)|2 ≤ αe−βt sup
−τ≤θ≤0

E|ξ(θ)|2.

Definition
System (18) is called REsMS with an H∞ disturbance attenuation
level γ if it is REsMS and under the zero initial condition,

E||y(t ; ξ)||2 ≤ γ||υ(t)||2

for any nonzero υ(t) ∈ L2[0,∞).
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Theorem 4

Given K ∈ Rm×n and λ1 > 0, λ2 > 0 with λ1 > 2λ2, system (18)
is robustly exponentially stable in mean-square with an H∞
disturbance attenuation level γ , if there are matrices P > 0,
Q > 0 and R > 0 satisfying the matrix inequality as follows:

Π =

 Λ11 PB PFυ
? Λ22 0
? ? −γ2I

 < 0, (20)

where

Λ11 = PA + AT P + PCK + K T CT P + 4PMMT P
+NT

1 N1 + K T NT
3 N3K + PCCT P + 2GT

1 PG1

+Q + 2(D + EK )T (D + EK ) + τR
+[λmax(K T NT

3 N3K ) + 2λmax(K T ET EK )

+λmax(K T K )]
2λ2

λ1 − 2λ2
I,

Λ22 = −(1− ρ)Q + NT
2 N2 + 2GT

2 PG2.
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Λ22 = −(1− ρ)Q + NT
2 N2 + 2GT

2 PG2.

Zhu Quanxin∗, Huang Tingwen, H∞ control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.
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Theorem 5

Given K ∈ Rm×n and λ1 > 0, λ2 > 0 with λ1 > 2λ2, system (8)
is robustly exponentially mean-square stable with an H∞
disturbance attenuation level γ , if there are matrices P > 0,
Q > 0 and R > 0 satisfying the LMI as follows:

Π =



Λ̃11 PB PCK PFυ PM PC
? Λ̃22 0 0 0 0
? ? Λ̃33 0 0 0
? ? ? −γ2I 0 0
? ? ? ? − I

4 0
? ? ? ? ? −I


< 0, (21)

where

Λ̃11 = PA + AT P + PCK + K T CT P + NT
1 N1 + K T NT

3 N3K
+2GT

1 PG1 + Q + 2(D + EK )T (D + EK ) + τR + 2λ2I,
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Λ̃22 = −(1− ρ)Q + NT
2 N2 + 2G2PG2,

Λ̃33 = −(λ1 − 2λ2)I + K T NT
3 N3K + 2K T ET EK .

Zhu Quanxin∗, Huang Tingwen, H∞ control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.
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Proof of Theorems

I do not present the proof since it is complex and tedious.
Instead, I only mention some techniques as follows:

Construct the following Lyapunov-Krasovskii functional:

V (xt ) = xT (t)Px(t) +

∫ t

t−τ(t)
xT (s)Qx(s)ds

+

∫ 0

−τ
dθ
∫ t

t+θ
xT (s)Rx(s)ds.

Step 1: We will prove that system (18) with υ(t) = 0 is
REsMS for all admissible uncertainties 4A(t),4B(t) and
4C(t).
Step 2: We will prove the following fact:

E||y(t ; ξ)||2 ≤ γ||υ(t)||2.
Stochastic analysis, the Dynkin formula, Fubini’s theorem
and some inequalities techniques, etc.
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Theorem 6

For given positive constants λ1 > 0, λ2 > 0 with λ1 > 2λ2 and
positive constants ε > 0, ρ > 0. System (18) is robustly
exponentially mean-square stable with an H∞ disturbance
attenuation level γ, if there exist positive definite matrices X , Q̄,
and matrix K̄ satisfying the LMI as follows:

Ξ =

 Ξ11 Ξ12 Ξ13
∗ Ξ22 Ξ23
∗ ∗ Ξ33

 < 0, (22)

where

Ξ11 =



Ã11 BQ̄ CK̄ Fv M C
∗ Ã22 0 0 0 0
∗ ∗ Ã33 0 0 0
∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ − I

4 0
∗ ∗ ∗ ∗ ∗ −I


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Ξ12 =



XNT
1 K̄ TNT

3 X TG1 X (DX + EK̄ )T
√
τ̄X

∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0



Ξ13 =



X 0 0 X 0 0
∗ Q̄TNT

2 Q̄G2 0 0 0
∗ ∗ 0 ε√

λ1−2λ2
K̄ TNT

3 K̄ TET

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


,

Ξ22 = diag
{
− I, −I, −X

2
, −Q̄, − I

2
, −R̄

}
, Ξ22 = 06×6,
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Ξ33 = diag
{
− I

2λ2
, −I, − I

2 , −I, −I, − I
2

}
,

in which Ã11 = AX + XAT + CK̄ + K̄ TC, Ã22 = −(1− ρ)Q̄,
Ã33 = −2εX . Further, the control gain matrix K is designed by

K = K̄ X−1. (23)

Zhu Quanxin∗, Huang Tingwen, H∞ control of stochastic
networked control systems with time-varying delays: The
event-triggered sampling case, International Journal of
Robust and Nonlinear Control 31(18)(2021)9767-9781.
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Proof of Theorem 6

Define P = X−1, Q = Q̄−1, and K = K̄ X−1.

Apply the Schur complement lemma and the following
lemma:

Lemma
For any n × n matrices U, X > 0 and positive scalar θ > 0, the
following matrix inequality holds:

UX−1UT ≥ θ(U + UT)− θ2X .
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Remark

In Theorems 4-6, our stability criteria depend on the upper
bound of delay τ and the upper bound of derivative of
delay ρ. Thus, our results are less conservative and more
effective than those delay-independent results.
According to the definition of ti+1 and (19), one can know
that the interval of arbitrary neighbouring triggered instants
has a positive lower bound, i.e., ti+1 − ti > 0 for all i ∈ Z+

o ,
which implies that there is no Zeno behavior.
Compared with the results obtained in [1]-[4], our results
are more general. In fact, the authors in [1]-[4] ignored the
effects of delays, noise disturbance and unknown
parameters. Furthermore, our results are more easily
applied in practice than those given in [1]-[4] since they are
given by LMIs (see Theorem 6).
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Example 1

Let us consider the following Itô stochastic nonlinear delay
system with exogenous disturbances:

dx(t) = [Ax(t) + Bx(t − 1) + f (t , x(t))

+g(t , x(t − 1)) + Cu(t) + υ(t)]dt
+σ(t , x(t), x(t − 1))dW (t), (24)

A =

[
1.5 −1
1.2 1.2

]
, B =

[
1.3 −1
0.9 0.8

]
, C =

[
1.2
0.8

]
,

f (t , x(t)) = 0.1(1 + sin(t))x(t),
g(t , x(t − 1)) = 0.1(1 + cos(t))x(t − 1),

σ(t , x(t), x(t − 1)) =

(
0.3x1(t) 0.3x2(t − 1)
0.2x2(t) 0.3x1(t − 1)

)
,
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Example 1

The exogenous disturbance input υ(t) = (υ1(t), υ2(t))T is
unknown but bounded. From figures (a) and (b), we know that
system (24) with u(t) = 0 is unstable even if the exogenous
disturbance input is missing.

Figure: The sample paths of system (24) with u(t) = 0 and υ(t) = 0
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Example 1

Figure: 2th moment of the solution to system (24) with u(t) = 0 and
υ(t) = 0
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Example 1

To stabilize system (24), we choose η1 = 0.1 and η2 = 0.1 . By
using the Matlab LMI toolbox, we can obtain the following
feasible solution for the LMI (10):

P =

[
28.2232 12.7276
12.7276 5.7997

]
, Q =

[
140.9209 74.3561
74.3561 41.6116

]
,

G1 =

[
112.3792 65.5420
65.5420 41.7449

]
, G2 =

[
114.1626 67.8160
67.8160 44.2443

]
,

G3 =

[
180.2896 23.1727
23.1727 141.1538

]
, G4 =

[
332.8759 216.0742
216.0742 152.8354

]
,

Y =
[
−191.7285 −127.8857

]
.

Thus, from Theorem 2 we can design the feedback gain matrix
K as

K = YP−1 =
[

304.4865 −690.2565
]
.
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Example 1

Choose the unknown exogenous disturbance v(t) satisfying
v1(t) = v0[0.5 + cos(t)] and v2(t) = v0[−0.5 + sin(t)], where v0
is a sequence of random generator numbers obeying
N(−0.4,0.4) and the initial values is a sequence of random
numbers of U(−1,1). Furthermore, figure (c) shows that the
control system is input-to-state practically exponentially
mean-square stable.

Figure: 2th moment of the solution to system (24) with control and
the exogenous disturbance
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Example 2

Let us consider the following stochastic networked control delay
system:

dx(t) = [A(t)x(t) + B(t)x(t − τ(t)) + C(t)u(t) + Fυυ(t)]dt
+[G1x(t) + G2x(t − τ(t))]dW (t),

y(t) = Dx(t) + Eu(t). (25)

The parameters of system (25) are given as follows:

A =

[
−1.2 0

0 −1.3

]
, B =

[
−0.3 0

0 −0.5

]
,

C =

[
0.2 0
0 −0.2

]
,G1 =

[
−0.2 −0.1
0.2 0.3

]
,

G2 =

[
−0.1 0.5
−0.2 −0.3

]
,D =

[
0.4 −0.2
0.1 0.2

]
,
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Example 2

E =

[
0.02 0

0 −0.2

]
,Fv =

[
−0.3 0.3
0.1 0.4

]
,

[4A(t),4B(t),4C(t)] = MF (t)[N1,N2,N3],

M =

[
0.3 −0.1
0.1 0.2

]
,N1 =

[
0.1 0
0 −0.1

]
,

N2 =

[
0.1 0.3
−0.1 0.2

]
, N3 =

[
0.1 −0.4
0.1 0.1

]
,

F (t) = sin(3πt), τ(t) = 1 + 0.2 cos(2πt),

Choose λ1 = 0.77, λ2 = 0.05, γ = 0.56. By virtue of MATLAB,
the corresponding solutions for (22) can be obtained as follows
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Example 2

X =

[
0.9949 0.1148
0.1148 1.5947

]
,

Q̄ =

[
1.3288 0.5341
0.5341 1.6456

]
,

K̄ =

[
−1.3878 −0.0584
−0.0584 0.8411

]
,

Then, from Theorem 44, we obtain the following control matrix:

K =

[
−1.4023 0.0643
−0.1205 0.5361

]
,

Therefore, system (25) is robustly exponentially stablizable in
mean-square with an H∞ disturbance attenuation level
γ = 0.56 by using the above matrix K , the event-triggered
parameters λ1 = 0.77 and λ2 = 0.05.
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Example 2

The state response of system (25) without/with the control can
be found in Figures 1-3.

Figure: The state response of system (25) without control under 2-D
case.
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Example 2

Figure: The state response of system (25) with control under 2-D
case.
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Example 2

Figure: The time evolution for E|x(t)|2.
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Example 3

The parameters of system (25) with 3-D case are given as
follows:

A =

 −1.4 0.2 0.2
0.3 −1.2 −0.2
0.1 0.2 −1.2

 ,
B =

 0.4 −0.2 0.3
−0.3 −0.2 0.3
−0.3 0.2 −0.6

 ,
C =

 0.2 0.1 0.2
−0.2 0.1 0.2
0.1 0.1 −0.2

 ,
G1 =

 −0.2 −0.1 0.2
0.2 0.2 0.3
−0.2 0.4 −0.3

 ,
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Example 3

G2 =

 −0.1 −0.1 0.5
−0.2 −0.3 0.2

0 0.5 −0.5

 , DT =

 −0.2
0.3
−0.2

 ,
ET =

 −0.3
0.1
0.2

 , Fv =

 0.3
−0.3
0.2

 ,
M =

 0.2
0.3
0.1

 , N1 = [0.3 0.2 0.1] ,

N2 = [0.1 0.5 0.7] , N3 = [0.6 0.2 0.1] ,

F (t) = sin(πt), τ(t) = 0.8 + 0.15 cos(πt).

Choose λ1 = 2.45, λ2 = 0.01, γ = 2.35.
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Example 3

By virtue of MATLAB, the corresponding solutions for (22) can
be obtained as follows

X =

 1.3652 −0.4469 −0.0991
−0.4469 1.5488 0.2809
−0.0991 0.2809 0.6286

 ,
Q̄ =

 1.1501 −0.2983 0.0299
−0.2983 1.3472 0.2769
0.0299 0.2769 0.4277

 ,
K̄ =

 −0.2796 0.1296 0.0754
0.1296 −0.6256 −1.3884
0.0754 −1.3884 0.8779

 ,
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Example 3

Then, from Theorem 44, we obtain the following control matrix:

K =

 −0.1947 0.0123 0.0838
−0.0734 −0.0244 −2.2094
−0.2347 −1.3174 1.9483

 .
Therefore, system (25) is robustly exponentially stablizable in
mean-square with an H∞ disturbance attenuation level
γ = 2.35 by using the above matrix K , the event-triggered
parameters λ1 = 2.45 and λ2 = 0.01. The state response of
system (25) without/with the control can be found in Figures 4
and 5, respectively.
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Example 3

Figure: The state response of system (25) with control under 3-D
case.
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Example 3

Figure: The state response of system (25) with control under 3-D
case.
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